查看原文
其他

8个数据清洗Python代码,复制可用,最长11行

点击上方“Python数据科学”,星标公众号
重磅干货,第一时间送达


☞卧槽!当当又可以4折买书了!屯书薅羊毛了!!

原作 Kin Lim Lee
乾明 编译整理
量子位 出品 | 公众号 QbitAI
最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。
数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。
这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。
在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。
大家可以把这篇文章收藏起来,当做工具箱使用。

涵盖8大场景的数据清洗代码

这些数据清洗代码,一共涵盖8个场景,分别是:
删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳(从字符串到日期时间格式)

删除多列

在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。
def drop_multiple_col(col_names_list, df): 
    
    AIM    -> Drop multiple columns based on their column names 

    INPUT  -> List of column names, df

    OUTPUT -> updated df with dropped columns 
    ------
    

    df.drop(col_names_list, axis=1, inplace=True)
    return df

转换数据类型

当数据集变大时,需要转换数据类型来节省内存。
def change_dtypes(col_int, col_float, df): 
    
    AIM    -> Changing dtypes to save memory

    INPUT  -> List of column names (int, float), df

    OUTPUT -> updated df with smaller memory  
    ------
    

    df[col_int] = df[col_int].astype( int32 )
    df[col_float] = df[col_float].astype( float32 )

将分类变量转换为数值变量

一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化。
def convert_cat2num(df):
    # Convert categorical variable to numerical variable
    num_encode = { col_1  : { YES :1 NO :0},
                   col_2   : { WON :1 LOSE :0 DRAW :0}}  
    df.replace(num_encode, inplace=True)  

检查缺失数据

如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。
def check_missing_data(df):
    # check for any missing data in the df (display in descending order)
    return df.isnull().sum().sort_values(ascending=False)

删除列中的字符串

有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。
def remove_col_str(df):
    # remove a portion of string in a dataframe column - col_1
    df[ col_1 ].replace(, , regex=True, inplace=True)

    # remove all the characters after &# (including &#) for column - col_1
    df[ col_1 ].replace(  &#.* , , regex=True, inplace=True)

删除列中的空格

数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用
def remove_col_white_space(df):
    # remove white space at the beginning of string 
    df[col] = df[col].str.lstrip()

用字符串连接两列(带条件)

当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。
根据需要,结尾处的字母也可以在连接完成后删除。
def concat_col_str_condition(df):
    # concat 2 columns with strings if the last 3 letters of the first column are  pil
    mask = df[ col_1 ].str.endswith( pil , na=False)
    col_new = df[mask][ col_1 ] + df[mask][ col_2 ]
    col_new.replace( pil   , regex=True, inplace=True)  # replace the  pil  with emtpy space


转换时间戳(从字符串到日期时间格式)

在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。
这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。
def convert_str_datetime(df): 
    
    AIM    -> Convert datetime(String) to datetime(format we want)

    INPUT  -> df

    OUTPUT -> updated df with new datetime format 
    ------
    

    df.insert(loc=2, column= timestamp , value=pd.to_datetime(df.transdate, format= %Y-%m-%d %H:%M:%S.%f )) 
最后,附上原文传送门~
https://towardsdatascience.com/the-simple-yet-practical-data-cleaning-codes-ad27c4ce0a38


赠送三本机器学习基础书籍

机器学习线性代数基础-Python语言描述


内容介绍:数学是机器学习绕不开的基础知识,传统教材的风格偏重理论定义和运算技巧,想以此高效地打下机器学习的数学基础,针对性和可读性并不佳。本书以机器学习涉及的线性代数核心知识为重点,进行新的尝试和突破:从坐标与变换、空间与映射、近似与拟合、相似与特征、降维与压缩这5个维度,环环相扣地展开线性代数与机器学习算法紧密结合的核心内容,并分析推荐系统和图像压缩两个实践案例,在介绍完核心概念后,还将线性代数的应用领域向函数空间和复数域中进行拓展与延伸;同时极力避免数学的晦涩枯燥,充分挖掘线性代数的几何内涵,并以Python语言为工具进行数学思想和解决方案的有效实践。 

  《机器学习线性代数基础:Python语言描述》适合实践于数据分析、信号处理等工程领域的读者,也适合在人工智能、机器学习领域进行理论学习和实践,希望筑牢数学基础的读者,以及正在进行线性代数课程学习的读者阅读。


赠送方式

关注下方公众号,回复:抽奖





推荐阅读


1、史上最全 | 数据分析技能详细拆解,一张图覆盖全流程知识细节和资源推荐

2、周志华教授报告:如何做研究与写论文?附完整pdf下载链接

3、吴恩达新书《Machine Learning Yearning》完整中文版(附下载)

4、资源 | 宾夕法尼亚大学计算机系教授1900页机器学习数学全书,附下载链接

5、北大开源了中文分词工具包,准确度远超Jieba,提供三个预训练模型


喜欢文章,点个在看

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存